Total No. of Questions— 8] [Total No. of Printed Pages— 5

| Seat |  |
|------|--|
| No.  |  |

## [5559]-119

S.E. (Mech/Auto./S/W) (I Sem.) EXAMINATION, 2019

#### ENGINEERING MATHEMATICS-III

#### (2015 PATTERN)

Maximum Marks : 50 Time : Two Hours

- N.B. :- (i) Neat diagrams must be drawn wherever necessary.
  - (ii) Figures to the right indicate full marks.
  - (iii) Use of electronic pocket calculator is allowed.
  - (iv) Assume suitable data, if necessary.
- Solve and two of the following differential equations : (i)  $\frac{d^2y}{dx^2} = 6 \frac{dy}{dx} = 9 y e^{3x} \cos 4 x = 6 e^{2x}$ 1. (a) [8] (ii)  $\frac{d^2y}{dx^2} = x\frac{dy}{dx} = 16 \text{ y} = x^2 = 2^{\log x} = 4 \cosh(\log x)$ (iii)  $\frac{d^2y}{dx^2}$  y cosec x, (by using method of variation of parameters)

Solve the integral equation : (b) [4]

$$f(x) \cos x \, dx \, e^2$$
,

P.T.O.

## Download all NOTES and PAPERS at StudentSuvidha.com

- 2. (a) A 8 lb weight is placed at one end of a spring suspended from the ceiling. The weight is raised to 5 inches above the equilibrium position and left free. Assuming the spring cosntant 12 lb/ft, find the equation of motion, the displacement function, amplitude and period. [4]
  - (b) Solve any one of the following :

[4]

(i) 
$$L[t et^{2t} \cos 3t]$$

(ii) 
$$L^{1} \frac{2s}{s^{2}} \frac{7}{4s} \frac{29}{29}$$

(C) Solve the differential equation by Laplace transform method : [4]

$$\frac{d^2y}{dt^2} \quad 2\frac{dy}{dt} \quad y \quad te$$

where y(0) = 0, y(0) = 3.

- (a) The first four moments of a distribution about the value 2.5 are thir10, 20 and 25. Obtain first four central moments. Also calculate coefficient of skewness (1) and coefficient of kurotsis (2). [4]
  - (b) A dice is thrown five times. If getting an odd number is a success, then what is the probability of getting : [4]
    - (i) four successes
    - (ii) at least four successes.
  - (C) Find the directional derivative of  $xy^2 yz^2 zx^2$  at (1, 1, 1) along the vector  $\overline{i} 2\overline{j} 2\overline{k}$  [4]

[5559]-119

2

### Download all NOTES and PAPERS at StudentSuvidha.com



[5559]-119

P.T.O.

### Download all NOTES and PAPERS at StudentSuvidha.com

3

(c) Using Stoke's theorem evaluate 
$$F \cdot \hat{n} dS$$
 where  
 $S$   
 $F (x y)i (y z) j xk and S is the surface of the plane
 $2x + y + z = 2$  which is in the first octant. [4]$ 

#### Or

6. (a) Using Green's theorem, evaluate 
$$e^{x}(\sin y \, dx \ \cos y \, dy)$$
 where  
'C' is the rectangle with vertices  $(0, 0)$  ( $0$ ),  $\frac{1}{2}$ ,  $0, \frac{1}{2}$ . [4]  
(b) Using Gauss divergene theorem, evaluate  
 $[(x^2 \ yz) \, dydz \ (y^2 \ xz) \, dx \, dz \ (z^2 \ xy) \, dx \, dy]$   
taken over rectangular parallelopiped  $0 \le x \le a, \ 0 \le y \le b, \ 0 \le z \le c$  [4]  
(c) Using state s theorem evaluate F.  $\hat{n} \, dS$ . Where  
F  $y_1^{(1)} z_1^{(2)} x_1^{(2)}$  over the surface  $x^2 \ y^2 \ 1 \ z, z \ 0.$  [5]  
7. (a) Solve the wave equation  $\frac{^2u}{t^2} \ C^2 \frac{^2u}{x^2}$  under the conditions :  
(i)  $u(0, t) = 0$   
(ii)  $u(4, t) = 0$   
(iii)  $\frac{u}{t} \ 0$  when  $t = 0$   
(iv)  $u(x, \ 0) = 25$ .  
[5559]-119 4

# Download all NOTES and PAPERS at StudentSuvidha.com

4

(b) Solve 
$$\frac{u}{t} C^2 \frac{u}{x^2}$$
 under the conditions : [6]  
(i)  $u(0, t) = 0$   
(ii)  $u(2, t) = 0$   
(iii)  $u(x, 0) = x, 0 < x < 2$ 

8. (a) Solve 
$$\frac{{}^{2}V}{x^{2}} - \frac{{}^{2}V}{y^{2}} = 0$$
, given that :  
(i)  $V(0, y) = 0$   
(ii)  $V(C, y) = 0$   
(iii)  $V = V_{0}$  when  $y = 0$ .  
(b) Use fourier transform to solve the equation [7]  
 $\frac{u}{t} - \frac{{}^{2}u}{t^{2}}, 0 = x, t = 0$   
subejct to conditions :  
(i)  $u(0, x) = 0, t = 0$   
(ii)  $u(0, x) = 0, t = 0$   
(iii)  $u(x, 0) = 0, t = 0$   
(iii)  $u(x, 0) = 0, x = 1$   
(iv)  $u(x, 0) = 0$ 

[5559]-119