Total No. of Questions- 8]
[Total No. of Printed Pages- 5

Seat No.	

[5559]-119

S.E. (Mech/Auto./S/W) (I Sem.) EXAMINATION, 2019 ENGINEERING MATHEMATICS—III

(2015 PATTERN)
Time : Two Hours
N.B. :- (i) Neat diagrams must be drawn wherever necessary.
(ii) Figures to the right indicate full marks.
(iii) Use of electronic pocket calculator is allowed.
(iv) Assume suitable data, if necessary.

1. (a) Solve anf two of the following differential equations :
(i) $\frac{d d^{2} y}{d x^{2}} \int \frac{d y}{d x} \quad 9 y \quad e^{3 x} \cos 4 x \quad 6 e^{2 x}$
(ii) $x^{2} \frac{d^{2} y}{d x^{2}} \quad x \frac{d y}{d x} \quad 16 y \quad x^{2} \quad 2^{\log x} \quad 4 \cosh (\log \quad x)$
(iii) $\frac{d^{2} y}{d x^{2}} y \operatorname{cosec} x$, (by using method of variation of parameters)
(b) Solve the integral equation :

$$
f(x) \cos \quad x d x \quad e^{2}
$$

P.T.O.

Or
2. (a) A 8 lb weight is placed at one end of a spring suspended from the ceiling. The weight is raised to 5 inches above the equilibrium position and left free. Assuming the spring cosntant
$12 \mathrm{lb} / \mathrm{ft}$, find the equation of motion, the displacement function, amplitude and period.
(b) Solve any one of the following :
(i) $\mathrm{L}\left[\mathrm{t} \mathrm{et}^{2 \mathrm{t}} \cos 3 \mathrm{t}\right]$
(ii) $\mathrm{L}^{1} \frac{2 \mathrm{~S} \quad 7}{\mathrm{~S}^{2} 4 \mathrm{~S} \quad 29}$.
(c) Solve the differential equation by Laplace transform method: [4]

$$
\frac{d^{2} y}{d t^{2}} \quad 2 \frac{d y}{d t} \quad y \quad t e^{t}
$$

where $y(0)=0, y(0)=3$.
3. (a) The first fofir moments of a distribution about the value 2.5 are do 10,20 and 25 . Obtain first four central moments. Also calculate coefficient of skewness (1) and coefficient of kurotsis (2).
(b) A diee is thrown five times. If getting an odd number is a success, then what is the probability of getting :
(i) four successes
(ii) at least four successes.
(c) Find the directional derivative of $x y^{2} \quad y z^{2} \quad z x^{2}$ at $(1,1,1)$ along the vector $\overline{\mathrm{i}} 2 \overline{\mathrm{j}} 2 \overline{\mathrm{~K}}$

Or

4. (a) Obtain the regression line of y on x for the following data :
[4]
$x \quad y$
$1 \quad 2$
$2 \quad 5$
3 3
$4 \quad 8$
$5 \quad 7$
(b) Prove the following (any one :
(i)

$$
\cdot \frac{\overline{\mathrm{a}} \bar{r}}{r} 0
$$

(ii) $\quad{ }^{2}\left(r^{9} \log r\right) \quad(90 \log r \quad 19) r^{7}$.
(c) Show that the vector field :

$$
\bar{F}=\left(x^{2} y y z\right) \bar{\Gamma} \quad\left(y^{2} \quad z x\right) \bar{j} \quad\left(\begin{array}{ll}
z^{2} & x y
\end{array}\right) \bar{k}
$$

is irrotation such that $\overline{\mathrm{F}}=$
5. (a) Evaluate F.dr where F zi $x j y k$ and C is the arc of the curve $r \cos t i \sin t j \quad t k$ from $t=0$ to $t=2$.
(b) Using Gauss divergence theorem, evaluate

F $\quad 2 x^{2} y i \quad y^{2} j \quad 4 x z^{2} k$ over the region bounded by the cylinder $y^{2} z^{2} 9$ and the plane $z=2$ in the first octant.
(c) Using Stoke's theorem evaluate F. ndS where S

F $\quad\left(\begin{array}{llll}x & y\end{array}\right) \mathrm{i} \quad\left(\begin{array}{ll}\mathrm{y} & \mathrm{z}\end{array}\right) \mathrm{j} \quad \mathrm{xk}$ and S is the surface of the plane $2 x+y+z=2$ which is in the first octant.

Or
6. (a) Using Green's theorem, evaluate $e^{x}(\sin y d x \cos y d y)$ where
' C ' is the rectangle with vertices $(0,0)(\quad 0), \overline{2}, 0, \overline{2}$.
(b) Using Gauss divergene theorem, evaluate

$$
\left.{ }_{s}^{\left[\begin{array}{llll}
x^{2} & y z
\end{array}\right) d y d z} \quad\left(\begin{array}{lll}
y^{2} & x z
\end{array}\right) d x d z \quad\left(\begin{array}{ll}
z^{2} & x y
\end{array}\right) d x d y\right]
$$

taken over rectangular parallelopiped $0 \leq \mathrm{x} \leq \mathrm{a}, 0 \leq \mathrm{y} \leq$ b, $0 \leq \mathrm{z} \leq \mathrm{cos}$
(c) Using strake's theorem evaluate F.ñ . Where F dyi zj $x k$ over the surface $x^{2} y^{2} y^{2} 1$
7. (a) Solve the wave equation $\frac{{ }^{2} u}{t^{2}} \quad C^{2} \frac{{ }^{2} u}{x^{2}}$ under the conditions:
(i) $\mathrm{u}(0, \mathrm{t})=0$
(ii) $\mathrm{u}(4, \mathrm{t})=0$
(iii) $\frac{\mathrm{u}}{\mathrm{t}} \quad 0$ when $\mathrm{t}=0$
(iv) $\mathrm{u}(\mathrm{x}, 0)=25$.
(b) Solve $\frac{\mathrm{u}}{\mathrm{t}} \quad \mathrm{C}^{2} \frac{{ }^{2} \mathrm{u}}{\mathrm{x}^{2}}$ under the conditions:
(i) $\mathrm{u}(0, \mathrm{t})=0$
(ii) $\mathrm{u}(2, \mathrm{t})=0$
(iii) $u(x, 0)=x, 0<x<2$

Or
8. (a) Solve $\frac{{ }^{2} V}{x^{2}} \quad \frac{{ }^{2} V}{y^{2}} \quad 0$, given that :
(i) $\mathrm{V}(0, \mathrm{y})=0$
(ii) $\mathrm{V}(\mathrm{C}, \mathrm{y})=0$
(iii) $\mathrm{V} \quad 0$ as y
(iii) $\mathrm{V}=\mathrm{V}_{0}$ when $\mathrm{y}=0$.
(b) Use fourier transform to solve the equation

$$
\frac{\mathrm{u}}{\mathrm{t}} \frac{{ }^{2} \mathrm{u}}{\mathrm{t}^{2}}, 0 \quad \mathrm{x} \quad, \mathrm{t} \quad 0
$$

subejct to coffaitions
(i)

(iii) $\mathrm{u}(\mathrm{x}, \mathrm{t})$ is bounded.

